Gaming in Physiotherapy

Original Editor - The Open Physio project.

Top Contributors - Rachael Lowe  


This article will look at the use of gaming in physiotherapy from two perspectives, namely; education and treatment.

Game: a competitive activity involving skill, chance, or endurance on the part of two or more persons who play according to a set of rules, usually for their own amusement or for that of spectators.

The problem

  • Education is not seen as exciting by students
  • Textbooks are not sufficiently engaging for this generation of students
  • Clinical placements are seen as very intimidating places where one cannot afford to make any mistakes
  • Traditional education methods are not reinforced and do not go further than the classroom
  • Education out of books can seem overwhelming to students

Features of games in general

Games generally involve:

  • Engagement with the content or story
  • Entertainment
  • Education (e.g. Civilisation teaches players general concepts, for example the relevance of trade, religion, war and resources on the development of society)
  • Reasoning (e.g. games that include puzzle solving and logic)

Gaming in physiotherapy education

The following section looks at a possible design strategy for the development of an educational game for physiotherapy students at different stages of their studies. The concepts highlighted in this scenario are equally applicable in other gaming environments.

Game design should focus on usability / playability to engage users, rather than relying purely on visual stimulation. The game should be designed to encourage interaction with content. This could be content presented within the game, as well as content the player must interact with outside the game. Players should also be encouraged to interact with other players, again, both within the game and in reality.

The game should follow a narrative (a story that takes place over time), both in the game and in reality and that provides context. Important elements of the gameplay include the actual story (depth, breadth, detail), the setting or environment in which the story (game) takes place, logical flow (realism) and level design.

Players could structure a career, based on either their interests or on areas in which they feel they would like more experience. Levels in the game could correspond to different stages of their careers i.e. undergraduate studies, community service, etc. At various stages of the game they could be presented with level appropriate “challenges” in the form of the interactions they engage in.

Key concepts in game design include:

  • The environment (e.g. an outpatient department)
  • Objects within the environment that change state (e.g. patients)
  • Rules that govern the object's change of state (e.g. correct decisions lead to patient progress, whereas incorrect decisions may lead to regression)
  • Rewards and punishment are given according the objects' change of state (e.g. promotion to the next year of study, completion of community service, disciplinary action)
  • Gameplay, or the experiences of the player during interactions can be thought of as “what the player does” and excludes visuals, sound, etc. It can be used to describe the quality of the story, the ease of play and overall desirability. Some consider it the most important indicator of the quality of a game.

Content design Designers need to be able to juggle many interrelated concepts, resolve creative / ethical / educational conflicts and understand the target audience (i.e. students). Content should be designed by:

  • Educators – to ensure sound educational principles are adhered to
  • Physiotherapists – to ensure clinical accuracy
  • Students – to ensure the game has entertainment value

Rules of the game (“game mechanics”) should closely mirror the "rules" of professional physiotherapy practice and the curriculum.


  • Provide help (when questioned / stuck)
  • Provide feedback (players respond to positive feedback after elegant solutions)
  • Prevent waiting (prompt responses to solutions given by players)
  • Avoid errors (inaccuracy in games are very frustrating)
  • Adapt the game to the player (e.g. change scenarios dynamically based on player feedback)

Potential roles within the game

  • Physiotherapist
  • Educator
  • Researcher
  • Patient


  • Hospital wards (e.g. orthopaedic ward)
  • Outpatient department
  • Private practice (owner or employee)
  • Sports team
  • Community work / Primary health care


  • Clinical cases (followed through their “lifetime” e.g. admission, initial assessment, treatment phase, discharge)
  • Ethical dilemmas
  • Practice management / Administration


  • Level 1 – Beginner (e.g. first and second year students)
  • Level 2 – Intermediate (e.g. third and fourth year students)
  • Level 3 – Advanced (e.g. community service)
  • Level 4 – Expert (e.g. independent practitioner / clinical specialist)

Players can focus their careers as they progress through stages of the game, with facilitators offering guidance to allow players to explore the processes they will go through in the real world.


  • Physical disabilities
  • Visual disabilities
  • Auditory disabilities
  • Attention deficit disorders
  • Confidence booster

Possible outcomes of gaming in education

For students:

  • Engage with the content on a deeper, more exciting level
  • Encourage interaction with other students / educators beyond the classroom
  • Introduce key clinical concepts in a simulated but practical and safe environment

For educators:

  • Go through the development process to gain a better understanding of the coursework
  • Gain a deeper understanding of the students approach to learning

Gaming in physiotherapy treatment

Gaming has already proven useful in physiotherapy practice. Specifically, the Wii gaming console has proven to be a low cost platform that aids in the rehabilitation of patients with Stroke and Parkinsons_Disease.

The Wii gaming console

Features of this console that could affect it's use by a Physiotherapist:

  • Remote controls that are position aware in all 3 dimensions (think, Proprioception)
  • Wireless
  • Additional hardware components that enhance the basic package (e.g. Wii balance board)
  • Internet connectivity

Advantages of the Wii in physiotherapy

  • Low cost
  • Visual and auditory feedback built in
  • Mobile, as opposed to, for example, a treadmill
  • Objective outcome measure (e.g. scores, progressing through levels)
  • Connection to the Internet allows remote reviewing of scores

Disadvantages of the Wii in physiotherapy

  • No research to provide valid, reliable measurements of it's use in treatment
  • No readily available software specific to the needs of physiotherapists

Special feature

The Wii balance board is a hardware enhancement to the basic Wii console that is extremely sensitive to weight shift on the platform due to the inclusion of four very accurate pressure sensors. This enables the game to monitor the players shifting centre of gravity which is used to provide input (in the same way a joystick might) that allows the player to interact with objects in the game (e.g. a snowboard).

With this in mind, imagine the potential for developing dynamic hip and knee control of a patient in a standing (or supported standing) position while they engage in a downhill skiing contest. Or developing static Balance while the game provides visual and auditory feedback of their progress.


Recent Related Research (from Pubmed)

Failed to load RSS feed from There was a problem during the HTTP request: 500 Internal Server Error


References will automatically be added here, see adding references tutorial.