Skeletal Muscle: Difference between revisions

No edit summary
No edit summary
Line 12: Line 12:


== Sub Heading 2 ==
== Sub Heading 2 ==
Muscle can be viewed as a biomechanical organ requiring the coordination between diverse factors both intrinsic (e.g., genetic) and extrinsic (e.g., environmental stressors, circulatory factors, etc.) to function normally, with each of these components cross talking. Abnormal molecular mechanisms can lead to disease and muscle research at many levels (genomic, molecular and mechanistic) is helping in the prevention and management of skeletal muscle health and disease.<ref>Mukund K, Subramaniam S. S[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916202/ keletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews]: Systems Biology and Medicine. 2020 Jan;12(1):e1462.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916202/ (accessed 16.4.2023)</ref>


== Sub Heading 3 ==
== Sub Heading 3 ==

Revision as of 06:59, 16 April 2023

Original Editor - Lucinda hampton

Top Contributors - Lucinda hampton  

Introduction[edit | edit source]

Skeletal muscle attaches to the bone by tendons, and together they produce all body movements. However it has important roles in health beyond voluntary movement.

Human skeletal muscle is an extremely dynamic and responsive tissue. Humans skeletal muscle constitutes roughly 40% of total body weight and a huge 50-75% of all the bodies proteins. Our muscle mass muscle mass depends on the dynamic process of protein synthesis and loss, this activity being responsive to factors including nutritional status, hormonal balance, physical activity/exercise, and injury or disease. As such it has important roles in health beyond voluntary movement.[1][2]

Skeletal muscle fibers are crossed with a orderly pattern of fine red and white lines, hence its name striated muscle. For more on this see Muscle Cells (Myocyte)

Sub Heading 2[edit | edit source]

Muscle can be viewed as a biomechanical organ requiring the coordination between diverse factors both intrinsic (e.g., genetic) and extrinsic (e.g., environmental stressors, circulatory factors, etc.) to function normally, with each of these components cross talking. Abnormal molecular mechanisms can lead to disease and muscle research at many levels (genomic, molecular and mechanistic) is helping in the prevention and management of skeletal muscle health and disease.[3]

Sub Heading 3[edit | edit source]

Resources[edit | edit source]

  • bulleted list
  • x

or

  1. numbered list
  2. x

References[edit | edit source]

  1. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcified tissue international. 2015 Mar;96:183-95.Available:https://pubmed.ncbi.nlm.nih.gov/25294644/ (accessed 16.4.2023)
  2. Graham ZA, Lavin KM, O’Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. American Journal of Physiology-Cell Physiology. 2021 Jul 1;321(7):C40-57.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424676/ (accessed 16.4.2023)
  3. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020 Jan;12(1):e1462.Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916202/ (accessed 16.4.2023)