Biofeedback

Acknowledgements[edit | edit source]

The original content for this page was kindly donated by Professor Tim Watson

                     Visit Tim's electrotherapy website at  www.electrotherapy.org


Introduction[edit | edit source]

A fairly concise, but useful definition (Weiner) might suggest that feedback is ‘..a method of controlling a system by reinserting into it the results of its past performance.’

When applied to biomedical problems, one adapts the basic definition and adds several components such as to make things more understandable and applicable. The longer, but possibly more useful definition now runs something like ‘...a technique which enables the individual to readily determine the activity levels of a particular physiological process, and with appropriate training, learn to manipulate the same process by an internalised mechanism.’

Whilst not the most poetic of definitions, this does convey the essentials - information is detected, provided in an understandable way to the patient who can then, at their own initiation, use the information to achieve a measure of control over the same process.

It is important that the changes as a result of biofeedback are volitional - i.e. requiring effort on behalf of the patient. Regulation of such processes at the automatic level is not really clinical biofeedback, though there is plenty of room for discussion on this point.

The practice of biofeedback has developed markedly over the last few years, and many different forms of feedback are currently employed in the clinical setting. The wide range of inputs (e.g. EMG, pressure, movement, pulse, blood pressure) means that many applications can be developed from the existing equipment. The limits to biofeedback applications are largely with the therapist. Given an understanding of the basic principles of the therapy in combination with a clinical understanding of the patients problem, there are many novel applications for the therapy. Given the limited scope of this document, the following consideration will focus exclusively on EMG Biofeedback.

Biofeedback as a component of treatment[edit | edit source]

It is important at the outset to emphasise that biofeedback is not at its most effective when used as a treatment in its own right, but should be integrated with other therapeutic interventions. It acts as an enhancer of the therapy, enabling the patient (and the therapist) to make more effective and rapid progress towards the rehabilitation goal. Furthermore, it is useful in that it helps the patient to reduce their reliance on the therapist and become more reliant on their own performance. Clearly this is not fully achieved if the patient becomes reliant on the machine instead of the therapist! It can be used effectively to enable the patient to take some control or ownership over their rehabilitation - empowerment is a often used phrase in this context. The key to success of biofeedback in rehabilitation is to use the device as an adjunct to therapy, to enable the patient to gain control without reliance on the therapist, and once gained, to maintain control without either the therapist or the machine. This approach is entirely in keeping with the general aim of modern physiotherapy, and the technology is an aid to the outcome, not a magical solution.

EMG Biofeedback - Physiological Principles[edit | edit source]

The principles of EMG biofeedback (EMGBF) are usefully reviewed, as a reasonable understanding of what the machine is doing will assist the therapist in determining the most appropriate machine settings and applications.

Read more about the physiological principles here ...

Features of the EMG Devices[edit | edit source]

  • Gain settings
  • Sound
  • Threshold
  • Peak Hold facility

Read about these features here ...