Wheelchair Biomechanics

Introduction[edit | edit source]

To study biomechanics of manual wheelchair helps to understand how interact the user’s body parts and functions with her/his wheelchair. It is the first step for choosing the appropriate design, the adapted accessories and adjust them according to individuals needs, profile and anatomy. Together with user’s feelings and feedbacks, biomechanics guides you to reach the optimal posture and efficient propulsion for the realisation of daily life activities.

According to McLaurin & C. E. Brubaker [1] wheelchair biomechanics involves the study of how a wheelchair user imparts power to the wheels to achieve mobility. Because a wheelchair can coast, power input need not be continuous, but each power strike can be followed by a period of recovery, with the stroking frequency depending on user preferences and the coasting characteristics of the wheelchair. The latter is described in terms of rolling resistance, wind resistance and the slope of the surface. From these three factors the power required to propel the wheelchair is determined, and must be matched by the power output of the user. The efficiency of propulsion is the ratio of this power output to the metabolic cost.[1]

Manual wheelchair propulsion, both in daily use and sports use is being increasingly studied, incorporating physiological, engineering and biomechanical perspectives with a focus towards ergonomics and injury mechanisms, especially the phenomena of overuse to the upper extremity. [2][3] Through a synchronised analysis of the movement pattern, Insight into force generation pattern and muscular activity pattern in hand rim wheelchair propulsion dynamics of people with a disability with various levels of physical activity and functional potential have been developed through lab based, synchronised analysis of the movement pattern. [3]

The features required in a wheelchair depend upon user characteristics and intended activities. The ideal wheelchair for an individual will have the features that closely match these characteristics and activities. Thus prescription is not just choosing a wheelchair, but choosing the components of the wheelchair that best serve the intended purpose, which include wheels, tyres, castors, frames, bearings, materials, construction details, seats, backrests, armrests, foot and legrests, headrests, wheel locks, running brakes, handrims, levers, accessories, adjustments and detachable parts. Each component is considered in relation to performance characteristics including rolling resistance, versatility, weight, comfort, stability, maneouvrability, transfer, stowage, durability and maintenance. [1]

Resources[edit | edit source]

References[edit | edit source]

  1. 1.0 1.1 1.2 McLaurin CA, Brubaker CE. Biomechanics and the Wheelchair. Prosthetics and Orthotics International. 1991 Jan 1;15(1):24-37.
  2. Van der Woude LH, Veeger HE, Dallmeijer AJ, Janssen TW, Rozendaal LA. Biomechanics and Physiology in Active Manual Wheelchair Propulsion. Medical Engineering and Physics. 2001 Dec 1;23(10):713-33.
  3. 3.0 3.1 Vanlandewijck Y, Theisen D, Daly D. Wheelchair Propulsion Biomechanics. Sports Medicine. 2001 Apr 1;31(5):339-67.