Respiratory Management for Traumatic Brain Injury

Welcome to Traumatic Brain Injury Content Creation Project. This page is being developed by participants of a project to populate the Traumatic Brain Injury Section of Physiopedia. 
  • Please do not edit unless you are involved in this project, but please come back in the near future to check out new information!!  
  • If you would like to get involved in this project and earn accreditation for your contributions, [[[Special:Contact|please get in touch]]]!

Tips for writing this page:


  1. x
  2. x

A quick word on content:

When you write this page please include:

  • Evidence (where appropriate and available
  • References
  • Images and Videos
  • A list of open online resources that we can link to

Example Content:

Original Editor - Wendy Walker

Top Contributors - Wendy Walker and Naomi O'Reilly  


In cases of Traumatic Brain Injury [TBI] respiratory dysfunction is the most common medical complication which occurs[1][2].

Up to one third of patients with severe TBI develop Acute Respiratory Distress Syndrome [ARDS][3][4].

Respiratory Assessment of TBI Patient

Add text here...

Respiratory Management

In the acute stages of TBI, the aims of management in the Intensive Care Unit are to maintain oxygen delivery in order to limit secondary neurological damage. Mechanical ventilation is commonly used with 3 aims: 1. To prevent/minimise hypoxia 2. To prevent/minimise hypercapnia 3. To protect the airway from risk of aspiration. It is acknowledged that difficulties are frequently encountered when weaning these patients from mechanical ventilation[5]. A number of recent studies have investigated the use of protective ventilation in the early stages following TBI[6][7].


References will automatically be added here, see adding references tutorial.

  1. Solenski NJ, Haley EC, Kassell NF, Kongable G, Germanson T, Truskowski L, Torner JC. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23:1007–1017.
  2. Plötz FB, Slutsky AS, van Vught AJ, Heijnen CJ. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med. 2004;30:1865–1872.
  3. Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, Erickson VR, Pittet JF. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–111. 
  4. Kahn JM, Caldwell EC, Deem S, Newell DW, Heckbert SR, Rubenfeld GD. Acute lung injury in patients with subarachnoid hemorrhage: incidence, risk factors, and outcome. Crit Care Med. 2006;34:196–202.
  5. Coplin WM, Pierson DJ, Cooley KD, et al. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161:1530–6.
  6. Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.
  7. Godet T, Chabanne R, Marin J, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study. Anesthesiology. 2017;126:104–14.